跳到内容

dspy.ChatAdapter

dspy.ChatAdapter(callbacks: Optional[list[BaseCallback]] = None)

基类: Adapter

源代码位于 dspy/adapters/chat_adapter.py
def __init__(self, callbacks: Optional[list[BaseCallback]] = None):
    super().__init__(callbacks)

函数

__call__(lm: LM, lm_kwargs: dict[str, Any], signature: Type[Signature], demos: list[dict[str, Any]], inputs: dict[str, Any]) -> list[dict[str, Any]]

源代码位于 dspy/adapters/chat_adapter.py
def __call__(
    self,
    lm: LM,
    lm_kwargs: dict[str, Any],
    signature: Type[Signature],
    demos: list[dict[str, Any]],
    inputs: dict[str, Any],
) -> list[dict[str, Any]]:
    try:
        return super().__call__(lm, lm_kwargs, signature, demos, inputs)
    except Exception as e:
        # fallback to JSONAdapter
        from dspy.adapters.json_adapter import JSONAdapter

        if isinstance(e, ContextWindowExceededError) or isinstance(self, JSONAdapter):
            # On context window exceeded error or already using JSONAdapter, we don't want to retry with a different
            # adapter.
            raise e
        return JSONAdapter()(lm, lm_kwargs, signature, demos, inputs)

acall(lm: LM, lm_kwargs: dict[str, Any], signature: Type[Signature], demos: list[dict[str, Any]], inputs: dict[str, Any]) -> list[dict[str, Any]] 异步

源代码位于 dspy/adapters/base.py
async def acall(
    self,
    lm: "LM",
    lm_kwargs: dict[str, Any],
    signature: Type[Signature],
    demos: list[dict[str, Any]],
    inputs: dict[str, Any],
) -> list[dict[str, Any]]:
    inputs = self.format(signature, demos, inputs)

    outputs = await lm.acall(messages=inputs, **lm_kwargs)
    return self._call_post_process(outputs, signature)

format(signature: Type[Signature], demos: list[dict[str, Any]], inputs: dict[str, Any]) -> list[dict[str, Any]]

格式化用于语言模型调用的输入消息。

此方法将 DSPy 结构化输入以及少样本示例和对话历史转换为语言模型期望的多轮消息。对于自定义适配器,可以覆盖此方法来定制输入消息的格式。

一般来说,我们建议消息具有以下结构

[
    {"role": "system", "content": system_message},
    # Begin few-shot examples
    {"role": "user", "content": few_shot_example_1_input},
    {"role": "assistant", "content": few_shot_example_1_output},
    {"role": "user", "content": few_shot_example_2_input},
    {"role": "assistant", "content": few_shot_example_2_output},
    ...
    # End few-shot examples
    # Begin conversation history
    {"role": "user", "content": conversation_history_1_input},
    {"role": "assistant", "content": conversation_history_1_output},
    {"role": "user", "content": conversation_history_2_input},
    {"role": "assistant", "content": conversation_history_2_output},
    ...
    # End conversation history
    {"role": "user", "content": current_input},
]

And system message should contain the field description, field structure, and task description.

参数

名称 类型 描述 默认值
signature 类型[Signature]

用于格式化输入消息的 DSPy 签名。

必需
demos 列表[字典[str, Any]]

少样本示例列表。

必需
inputs 字典[str, Any]

传递给 DSPy 模块的输入参数。

必需

返回值

类型 描述
列表[字典[str, Any]]

语言模型期望的多轮消息列表。

源代码位于 dspy/adapters/base.py
def format(
    self,
    signature: Type[Signature],
    demos: list[dict[str, Any]],
    inputs: dict[str, Any],
) -> list[dict[str, Any]]:
    """Format the input messages for the LM call.

    This method converts the DSPy structured input along with few-shot examples and conversation history into
    multiturn messages as expected by the LM. For custom adapters, this method can be overridden to customize
    the formatting of the input messages.

    In general we recommend the messages to have the following structure:
    ```
    [
        {"role": "system", "content": system_message},
        # Begin few-shot examples
        {"role": "user", "content": few_shot_example_1_input},
        {"role": "assistant", "content": few_shot_example_1_output},
        {"role": "user", "content": few_shot_example_2_input},
        {"role": "assistant", "content": few_shot_example_2_output},
        ...
        # End few-shot examples
        # Begin conversation history
        {"role": "user", "content": conversation_history_1_input},
        {"role": "assistant", "content": conversation_history_1_output},
        {"role": "user", "content": conversation_history_2_input},
        {"role": "assistant", "content": conversation_history_2_output},
        ...
        # End conversation history
        {"role": "user", "content": current_input},
    ]

    And system message should contain the field description, field structure, and task description.
    ```


    Args:
        signature: The DSPy signature for which to format the input messages.
        demos: A list of few-shot examples.
        inputs: The input arguments to the DSPy module.

    Returns:
        A list of multiturn messages as expected by the LM.
    """
    inputs_copy = dict(inputs)

    # If the signature and inputs have conversation history, we need to format the conversation history and
    # remove the history field from the signature.
    history_field_name = self._get_history_field_name(signature)
    if history_field_name:
        # In order to format the conversation history, we need to remove the history field from the signature.
        signature_without_history = signature.delete(history_field_name)
        conversation_history = self.format_conversation_history(
            signature_without_history,
            history_field_name,
            inputs_copy,
        )

    messages = []
    system_message = (
        f"{self.format_field_description(signature)}\n"
        f"{self.format_field_structure(signature)}\n"
        f"{self.format_task_description(signature)}"
    )
    messages.append({"role": "system", "content": system_message})
    messages.extend(self.format_demos(signature, demos))
    if history_field_name:
        # Conversation history and current input
        content = self.format_user_message_content(signature_without_history, inputs_copy, main_request=True)
        messages.extend(conversation_history)
        messages.append({"role": "user", "content": content})
    else:
        # Only current input
        content = self.format_user_message_content(signature, inputs_copy, main_request=True)
        messages.append({"role": "user", "content": content})

    messages = split_message_content_for_custom_types(messages)
    return messages

format_assistant_message_content(signature: Type[Signature], outputs: dict[str, Any], missing_field_message=None) -> str

源代码位于 dspy/adapters/chat_adapter.py
def format_assistant_message_content(
    self,
    signature: Type[Signature],
    outputs: dict[str, Any],
    missing_field_message=None,
) -> str:
    return self.format_field_with_value(
        {
            FieldInfoWithName(name=k, info=v): outputs.get(k, missing_field_message)
            for k, v in signature.output_fields.items()
        },
    )

format_conversation_history(signature: Type[Signature], history_field_name: str, inputs: dict[str, Any]) -> list[dict[str, Any]]

格式化对话历史。

此方法将对话历史和当前输入格式化为多轮消息。

参数

名称 类型 描述 默认值
signature 类型[Signature]

用于格式化对话历史的 DSPy 签名。

必需
history_field_name str

签名中历史字段的名称。

必需
inputs 字典[str, Any]

传递给 DSPy 模块的输入参数。

必需

返回值

类型 描述
列表[字典[str, Any]]

多轮消息列表。

源代码位于 dspy/adapters/base.py
def format_conversation_history(
    self,
    signature: Type[Signature],
    history_field_name: str,
    inputs: dict[str, Any],
) -> list[dict[str, Any]]:
    """Format the conversation history.

    This method formats the conversation history and the current input as multiturn messages.

    Args:
        signature: The DSPy signature for which to format the conversation history.
        history_field_name: The name of the history field in the signature.
        inputs: The input arguments to the DSPy module.

    Returns:
        A list of multiturn messages.
    """
    conversation_history = inputs[history_field_name].messages if history_field_name in inputs else None

    if conversation_history is None:
        return []

    messages = []
    for message in conversation_history:
        messages.append(
            {
                "role": "user",
                "content": self.format_user_message_content(signature, message),
            }
        )
        messages.append(
            {
                "role": "assistant",
                "content": self.format_assistant_message_content(signature, message),
            }
        )

    # Remove the history field from the inputs
    del inputs[history_field_name]

    return messages

format_demos(signature: Type[Signature], demos: list[dict[str, Any]]) -> list[dict[str, Any]]

格式化少样本示例。

此方法将少样本示例格式化为多轮消息。

参数

名称 类型 描述 默认值
signature 类型[Signature]

用于格式化少样本示例的 DSPy 签名。

必需
demos 列表[字典[str, Any]]

少样本示例列表,每个元素都是一个字典,包含签名的输入和输出字段作为键。

必需

返回值

类型 描述
列表[字典[str, Any]]

多轮消息列表。

源代码位于 dspy/adapters/base.py
def format_demos(self, signature: Type[Signature], demos: list[dict[str, Any]]) -> list[dict[str, Any]]:
    """Format the few-shot examples.

    This method formats the few-shot examples as multiturn messages.

    Args:
        signature: The DSPy signature for which to format the few-shot examples.
        demos: A list of few-shot examples, each element is a dictionary with keys of the input and output fields of
            the signature.

    Returns:
        A list of multiturn messages.
    """
    complete_demos = []
    incomplete_demos = []

    for demo in demos:
        # Check if all fields are present and not None
        is_complete = all(k in demo and demo[k] is not None for k in signature.fields)

        # Check if demo has at least one input and one output field
        has_input = any(k in demo for k in signature.input_fields)
        has_output = any(k in demo for k in signature.output_fields)

        if is_complete:
            complete_demos.append(demo)
        elif has_input and has_output:
            # We only keep incomplete demos that have at least one input and one output field
            incomplete_demos.append(demo)

    messages = []

    incomplete_demo_prefix = "This is an example of the task, though some input or output fields are not supplied."
    for demo in incomplete_demos:
        messages.append(
            {
                "role": "user",
                "content": self.format_user_message_content(signature, demo, prefix=incomplete_demo_prefix),
            }
        )
        messages.append(
            {
                "role": "assistant",
                "content": self.format_assistant_message_content(
                    signature, demo, missing_field_message="Not supplied for this particular example. "
                ),
            }
        )

    for demo in complete_demos:
        messages.append({"role": "user", "content": self.format_user_message_content(signature, demo)})
        messages.append(
            {
                "role": "assistant",
                "content": self.format_assistant_message_content(
                    signature, demo, missing_field_message="Not supplied for this conversation history message. "
                ),
            }
        )

    return messages

format_field_description(signature: Type[Signature]) -> str

源代码位于 dspy/adapters/chat_adapter.py
def format_field_description(self, signature: Type[Signature]) -> str:
    return (
        f"Your input fields are:\n{get_field_description_string(signature.input_fields)}\n"
        f"Your output fields are:\n{get_field_description_string(signature.output_fields)}"
    )

format_field_structure(signature: Type[Signature]) -> str

ChatAdapter 要求输入和输出字段位于各自的部分,部分标题使用标记 [[ ## field_name ## ]]。一个任意字段 completed ([[ ## completed ## ]]) 会添加到输出字段部分的末尾,以指示输出字段的结束。

源代码位于 dspy/adapters/chat_adapter.py
def format_field_structure(self, signature: Type[Signature]) -> str:
    """
    `ChatAdapter` requires input and output fields to be in their own sections, with section header using markers
    `[[ ## field_name ## ]]`. An arbitrary field `completed` ([[ ## completed ## ]]) is added to the end of the
    output fields section to indicate the end of the output fields.
    """
    parts = []
    parts.append("All interactions will be structured in the following way, with the appropriate values filled in.")

    def format_signature_fields_for_instructions(fields: Dict[str, FieldInfo]):
        return self.format_field_with_value(
            fields_with_values={
                FieldInfoWithName(name=field_name, info=field_info): translate_field_type(field_name, field_info)
                for field_name, field_info in fields.items()
            },
        )

    parts.append(format_signature_fields_for_instructions(signature.input_fields))
    parts.append(format_signature_fields_for_instructions(signature.output_fields))
    parts.append("[[ ## completed ## ]]\n")
    return "\n\n".join(parts).strip()

format_field_with_value(fields_with_values: Dict[FieldInfoWithName, Any]) -> str

根据字段的 DSPy 类型(输入或输出)、注解(例如 str、int 等)以及值本身的类型,格式化指定字段的值。将格式化后的值连接成一个字符串,如果存在多个字段,则该字符串是多行字符串。

参数

名称 类型 描述 默认值
fields_with_values 字典[FieldInfoWithName, Any]

将字段信息映射到其对应值的字典。

必需

返回值

类型 描述
str

字段的连接格式化值,表示为字符串

源代码位于 dspy/adapters/chat_adapter.py
def format_field_with_value(self, fields_with_values: Dict[FieldInfoWithName, Any]) -> str:
    """
    Formats the values of the specified fields according to the field's DSPy type (input or output),
    annotation (e.g. str, int, etc.), and the type of the value itself. Joins the formatted values
    into a single string, which is is a multiline string if there are multiple fields.

    Args:
        fields_with_values: A dictionary mapping information about a field to its corresponding
            value.

    Returns:
        The joined formatted values of the fields, represented as a string
    """
    output = []
    for field, field_value in fields_with_values.items():
        formatted_field_value = format_field_value(field_info=field.info, value=field_value)
        output.append(f"[[ ## {field.name} ## ]]\n{formatted_field_value}")

    return "\n\n".join(output).strip()

format_finetune_data(signature: Type[Signature], demos: list[dict[str, Any]], inputs: dict[str, Any], outputs: dict[str, Any]) -> dict[str, list[Any]]

根据 OpenAI API 规范将调用数据格式化为微调数据。

对于聊天适配器,这意味着将数据格式化为一个消息列表,其中每条消息都是一个带有“role”和“content”键的字典。角色可以是“system”、“user”或“assistant”。然后,消息被包装在一个带有“messages”键的字典中。

源代码位于 dspy/adapters/chat_adapter.py
def format_finetune_data(
    self,
    signature: Type[Signature],
    demos: list[dict[str, Any]],
    inputs: dict[str, Any],
    outputs: dict[str, Any],
) -> dict[str, list[Any]]:
    """
    Format the call data into finetuning data according to the OpenAI API specifications.

    For the chat adapter, this means formatting the data as a list of messages, where each message is a dictionary
    with a "role" and "content" key. The role can be "system", "user", or "assistant". Then, the messages are
    wrapped in a dictionary with a "messages" key.
    """
    system_user_messages = self.format(  # returns a list of dicts with the keys "role" and "content"
        signature=signature, demos=demos, inputs=inputs
    )
    assistant_message_content = self.format_assistant_message_content(  # returns a string, without the role
        signature=signature, outputs=outputs
    )
    assistant_message = {"role": "assistant", "content": assistant_message_content}
    messages = system_user_messages + [assistant_message]
    return {"messages": messages}

format_task_description(signature: Type[Signature]) -> str

源代码位于 dspy/adapters/chat_adapter.py
def format_task_description(self, signature: Type[Signature]) -> str:
    instructions = textwrap.dedent(signature.instructions)
    objective = ("\n" + " " * 8).join([""] + instructions.splitlines())
    return f"In adhering to this structure, your objective is: {objective}"

format_user_message_content(signature: Type[Signature], inputs: dict[str, Any], prefix: str = '', suffix: str = '', main_request: bool = False) -> str

源代码位于 dspy/adapters/chat_adapter.py
def format_user_message_content(
    self,
    signature: Type[Signature],
    inputs: dict[str, Any],
    prefix: str = "",
    suffix: str = "",
    main_request: bool = False,
) -> str:
    messages = [prefix]
    for k, v in signature.input_fields.items():
        if k in inputs:
            value = inputs.get(k)
            formatted_field_value = format_field_value(field_info=v, value=value)
            messages.append(f"[[ ## {k} ## ]]\n{formatted_field_value}")

    if main_request:
        output_requirements = self.user_message_output_requirements(signature)
        if output_requirements is not None:
            messages.append(output_requirements)

    messages.append(suffix)
    return "\n\n".join(messages).strip()

parse(signature: Type[Signature], completion: str) -> dict[str, Any]

源代码位于 dspy/adapters/chat_adapter.py
def parse(self, signature: Type[Signature], completion: str) -> dict[str, Any]:
    sections = [(None, [])]

    for line in completion.splitlines():
        match = field_header_pattern.match(line.strip())
        if match:
            # If the header pattern is found, split the rest of the line as content
            header = match.group(1)
            remaining_content = line[match.end() :].strip()
            sections.append((header, [remaining_content] if remaining_content else []))
        else:
            sections[-1][1].append(line)

    sections = [(k, "\n".join(v).strip()) for k, v in sections]

    fields = {}
    for k, v in sections:
        if (k not in fields) and (k in signature.output_fields):
            try:
                fields[k] = parse_value(v, signature.output_fields[k].annotation)
            except Exception as e:
                raise AdapterParseError(
                    adapter_name="ChatAdapter",
                    signature=signature,
                    lm_response=completion,
                    message=f"Failed to parse field {k} with value {v} from the LM response. Error message: {e}",
                )
    if fields.keys() != signature.output_fields.keys():
        raise AdapterParseError(
            adapter_name="ChatAdapter",
            signature=signature,
            lm_response=completion,
            parsed_result=fields,
        )

    return fields

user_message_output_requirements(signature: Type[Signature]) -> str

为语言模型返回简化的格式提醒。

在基于聊天的交互中,随着对话上下文变长,语言模型可能会忘记所需的输出格式。此方法生成关于预期输出结构的简洁提醒,可以包含在用户消息中。

参数

名称 类型 描述 默认值
signature 类型[Signature]

定义预期输入/输出字段的 DSPy 签名。

必需

返回值

名称 类型 描述
str str

所需输出格式的简化描述。

注意

这是 format_field_structure 的更轻量级版本,专为聊天消息中的内联提醒而设计。

源代码位于 dspy/adapters/chat_adapter.py
def user_message_output_requirements(self, signature: Type[Signature]) -> str:
    """Returns a simplified format reminder for the language model.

    In chat-based interactions, language models may lose track of the required output format
    as the conversation context grows longer. This method generates a concise reminder of
    the expected output structure that can be included in user messages.

    Args:
        signature (Type[Signature]): The DSPy signature defining the expected input/output fields.

    Returns:
        str: A simplified description of the required output format.

    Note:
        This is a more lightweight version of `format_field_structure` specifically designed
        for inline reminders within chat messages.
    """

    def type_info(v):
        if v.annotation is not str:
            return f" (must be formatted as a valid Python {get_annotation_name(v.annotation)})"
        else:
            return ""

    message = "Respond with the corresponding output fields, starting with the field "
    message += ", then ".join(f"`[[ ## {f} ## ]]`{type_info(v)}" for f, v in signature.output_fields.items())
    message += ", and then ending with the marker for `[[ ## completed ## ]]`."
    return message